WSOM 2005, Paris Self-Organizing Maps for Time Series
نویسندگان
چکیده
We review a recent extension of the self-organizing map (SOM) for temporal structures with a simple recurrent dynamics leading to sparse representations, which allows an efficient training and a combination with arbitrary lattice structures. We discuss its practical applicability and its theoretical properties. Afterwards, we put the approach into a general framework of recurrent unsupervised models. This generic formulation also covers a variety of well-known alternative approaches including the temporal Kohonen map, the recursive SOM, and SOM for structured data. Based on this formulation, mathematical properties of the models are investigated. Interestingly, the dynamic can be generalized from sequences to more general tree structures thus opening the way to unsupervised processing of general data structures.
منابع مشابه
Editorial: Advances in Self-Organizing Maps
Each two years, the “Workshop on Self-Organizing Maps” (WSOM) covers the new developments in the field. The WSOM series of conferences was initiated in 1997 by Prof. Teuvo Kohonen, and has been successfully organized in 1997 and 1999 by the Helsinki University of Technology, in 2001 by the University of Lincolnshire and Humberside, and in 2003 by the Kyushu Institute of Technology. The Universi...
متن کاملAdvances in Self-Organizing Maps
The Self-Organizing Map (SOM) with its related extensions is the most popular artificial neural algorithm for use in unsupervised learning, clustering, classification and data visualization. Over 5000 publications have been reported in the open literature, and many commercial projects employ the SOM as a tool for solving hard real-world problems. Every two years, the “Workshop on Self-Organizin...
متن کاملTheoretical and Applied Aspects of the Self-Organizing Maps
The Self-Organizing Map (SOM) is widely used, easy to implement, has nice properties for data mining by providing both clustering and visual representation. It acts as an extension of the k-means algorithm that preserves as much as possible the topological structure of the data. However, since its conception, the mathematical study of the SOM remains di cult and has be done only in very special...
متن کاملAdvances in Self-Organizing Maps
The Self-Organizing Map (SOM) with its related extensions is the most popular artificial neural algorithm for use in unsupervised learning, clustering, classification and data visualization. Over 5,000 publications have been reported in the open literature, and many commercial projects employ the SOM as a tool for solving hard real-world problems. Each two years, the " Workshop on Self-Organizi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005